Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 51 - 65 of 65 results
51.

How Does Photoreceptor UVR8 Perceive a UV-B Signal?

UV UV receptors Review Background
Photochem Photobiol, 11 Jun 2015 DOI: 10.1111/php.12470 Link to full text
Abstract: UVR8 is the only known plant photoreceptor that mediates light responses to UV-B (280-315 nm) of the solar spectrum. UVR8 perceives a UV-B signal via light-induced dimer dissociation, which triggers a wide range of cellular responses involved in photomorphogenesis and photoprotection. Two recent crystal structures of Arabidopsis thaliana UVR8 (AtUVR8) have revealed unusual clustering of UV-B-absorbing Trp pigments at the dimer interface and provided a structural framework for further mechanistic investigation. This review summarizes recent advances in spectroscopic, computational and crystallographic studies on UVR8 that are directed toward full understanding of UV-B perception at the molecular level.
52.

Optical control of biological processes by light-switchable proteins.

blue cyan red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Wiley Interdiscip Rev Dev Biol, 8 Apr 2015 DOI: 10.1002/wdev.188 Link to full text
Abstract: Cellular processes such as proliferation, differentiation, or migration depend on precise spatiotemporal coordination of protein activities. Correspondingly, reaching a quantitative understanding of cellular behavior requires experimental approaches that enable spatial and temporal modulation of protein activity. Recently, a variety of light-sensitive protein domains have been engineered as optogenetic actuators to spatiotemporally control protein activity. In the present review, we discuss the principle of these optical control methods and examples of their applications in modulating signaling pathways. By controlling protein activity with spatiotemporal specificity, tunable dynamics, and quantitative control, light-controllable proteins promise to accelerate our understanding of cellular and organismal biology.
53.

Optogenetics for gene expression in mammalian cells.

blue cyan red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Biol Chem, 10 Jan 2015 DOI: 10.1515/hsz-2014-0199 Link to full text
Abstract: Molecular switches that are controlled by chemicals have evolved as central research instruments in mammalian cell biology. However, these tools are limited in terms of their spatiotemporal resolution due to freely diffusing inducers. These limitations have recently been addressed by the development of optogenetic, genetically encoded, and light-responsive tools that can be controlled with the unprecedented spatiotemporal precision of light. In this article, we first provide a brief overview of currently available optogenetic tools that have been designed to control diverse cellular processes. Then, we focus on recent developments in light-controlled gene expression technologies and provide the reader with a guideline for choosing the most suitable gene expression system.
54.

Optogenetic control of intracellular signaling pathways.

blue red UV Cryptochromes Phytochromes UV receptors Review
Trends Biotechnol, 17 Dec 2014 DOI: 10.1016/j.tibtech.2014.11.007 Link to full text
Abstract: Cells employ a plethora of signaling pathways to make their life-and-death decisions. Extensive genetic, biochemical, and physiological studies have led to the accumulation of knowledge about signaling components and their interactions within signaling networks. These conventional approaches, although useful, lack the ability to control the spatial and temporal aspects of signaling processes. The recently emerged optogenetic tools open exciting opportunities by enabling signaling regulation with superior temporal and spatial resolution, easy delivery, rapid reversibility, fewer off-target side effects, and the ability to dissect complex signaling networks. Here we review recent achievements in using light to control intracellular signaling pathways and discuss future prospects for the field, including integration of new genetic approaches into optogenetics.
55.

Plant flavoprotein photoreceptors.

blue red UV Cryptochromes LOV domains Phytochromes UV receptors Review Background
Plant Cell Physiol, 15 Dec 2014 DOI: 10.1093/pcp/pcu196 Link to full text
Abstract: Plants depend on the surrounding light environment to direct their growth. Blue light (300-500 nm) in particular acts to promote a wide variety of photomorphogenic responses including seedling establishment, phototropism and circadian clock regulation. Several different classes of flavin-based photoreceptors have been identified that mediate the effects of blue light in the dicotyledonous genetic model Arabidopsis thaliana. These include the cryptochromes, the phototropins and members of the Zeitlupe family. In this review, we discuss recent advances, which contribute to our understanding of how these photosensory systems are activated by blue light and how they initiate signaling to regulate diverse aspects of plant development.
56.

Natural photoreceptors and their application to synthetic biology.

blue cyan red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Trends Biotechnol, 12 Nov 2014 DOI: 10.1016/j.tibtech.2014.10.007 Link to full text
Abstract: The ability to perturb living systems is essential to understand how cells sense, integrate, and exchange information, to comprehend how pathologic changes in these processes relate to disease, and to provide insights into therapeutic points of intervention. Several molecular technologies based on natural photoreceptor systems have been pioneered that allow distinct cellular signaling pathways to be modulated with light in a temporally and spatially precise manner. In this review, we describe and discuss the underlying design principles of natural photoreceptors that have emerged as fundamental for the rational design and implementation of synthetic light-controlled signaling systems. Furthermore, we examine the unique challenges that synthetic protein technologies face when applied to the study of neural dynamics at the cellular and network level.
57.

Optogenetic approaches to cell migration and beyond.

blue cyan red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Curr Opin Cell Biol, 15 Sep 2014 DOI: 10.1016/j.ceb.2014.08.004 Link to full text
Abstract: Optogenetics, the use of genetically encoded tools to control protein function with light, can generate localized changes in signaling within living cells and animals. For years it has been focused on channel proteins for neurobiology, but has recently expanded to cover many different types of proteins, using a broad array of different protein engineering approaches. These methods have largely been directed at proteins involved in motility, cytoskeletal regulation and gene expression. This review provides a survey of non-channel proteins that have been engineered for optogenetics. Existing molecules are used to illustrate the advantages and disadvantages of the many imaginative new approaches that the reader can use to create light-controlled proteins.
58.

Optogenetic control of signaling in mammalian cells.

blue cyan red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Biotechnol J, 12 Sep 2014 DOI: 10.1002/biot.201400077 Link to full text
Abstract: Molecular signals are sensed by their respective receptors and information is transmitted and processed by a sophisticated intracellular network controlling various biological functions. Optogenetic tools allow the targeting of specific signaling nodes for a precise spatiotemporal control of downstream effects. These tools are based on photoreceptors such as phytochrome B (PhyB), cryptochrome 2, or light-oxygen-voltage-sensing domains that reversibly bind to specific interaction partners in a light-dependent manner. Fusions of a protein of interest to the photoreceptor or their interaction partners may enable the control of the protein function by light-mediated dimerization, a change of subcellular localization, or due to photocaging/-uncaging of effectors. In this review, we summarize the photoreceptors and the light-based mechanisms utilized for the modulation of signaling events in mammalian cells focusing on non-neuronal applications. We discuss in detail optogenetic tools and approaches applied to control signaling events mediated by second messengers, Rho GTPases and growth factor-triggered signaling cascades namely the RAS/RAF and phosphatidylinositol-3-kinase pathways. Applying the latest generation of optogenetic tools allows to control cell fate decisions such as proliferation and differentiation or to deliver therapeutic substances in a spatiotemporally controlled manner.
59.

Tools for controlling protein interactions using light.

blue UV Cryptochromes UV receptors Review
Curr Protoc Cell Biol, 2 Sep 2014 DOI: 10.1002/0471143030.cb1716s64 Link to full text
Abstract: Genetically encoded actuators that allow control of protein-protein interactions using light, termed 'optical dimerizers', are emerging as new tools for experimental biology. In recent years, numerous new and versatile dimerizer systems have been developed. Here we discuss the design of optical dimerizer experiments, including choice of a dimerizer system, photoexcitation sources, and the coordinate use of imaging reporters. We provide detailed protocols for experiments using two dimerization systems we previously developed, CRY2/CIB and UVR8/UVR8, for use in controlling transcription, protein localization, and protein secretion using light. Additionally, we provide instructions and software for constructing a pulse-controlled LED device for use in experiments requiring extended light treatments.
60.

How to control proteins with light in living systems.

blue red UV BLUF domains Cryptochromes LOV domains Phytochromes UV receptors Review
Nat Chem Biol, 17 Jun 2014 DOI: 10.1038/nchembio.1534 Link to full text
Abstract: The possibility offered by photocontrolling the activity of biomolecules in vivo while recording physiological parameters is opening up new opportunities for the study of physiological processes at the single-cell level in a living organism. For the last decade, such tools have been mainly used in neuroscience, and their application in freely moving animals has revolutionized this field. New photochemical approaches enable the control of various cellular processes by manipulating a wide range of protein functions in a noninvasive way and with unprecedented spatiotemporal resolution. We are at a pivotal moment where biologists can adapt these cutting-edge technologies to their system of study. This user-oriented review presents the state of the art and highlights technical issues to be resolved in the near future for wide and easy use of these powerful approaches.
61.

The UV-B photoreceptor UVR8: from structure to physiology.

UV UV receptors Review Background
Plant Cell, 30 Jan 2014 DOI: 10.1105/tpc.113.119446 Link to full text
Abstract: Low doses of UV-B light (280 to 315 nm) elicit photomorphogenic responses in plants that modify biochemical composition, photosynthetic competence, morphogenesis, and defense. UV RESISTANCE LOCUS8 (UVR8) mediates photomorphogenic responses to UV-B by regulating transcription of a set of target genes. UVR8 differs from other known photoreceptors in that it uses specific Trp amino acids instead of a prosthetic chromophore for light absorption during UV-B photoreception. Absorption of UV-B dissociates the UVR8 dimer into monomers, initiating signal transduction through interaction with CONSTITUTIVELY PHOTOMORPHOGENIC1. However, much remains to be learned about the physiological role of UVR8 and its interaction with other signaling pathways, the molecular mechanism of UVR8 photoreception, how the UVR8 protein initiates signaling, how it is regulated, and how UVR8 regulates transcription of its target genes.
62.

A light-triggered protein secretion system.

UV UVR8/UVR8 Cos-7 HEK293T rat hippocampal neurons Control of vesicular transport
J Cell Biol, 13 May 2013 DOI: 10.1083/jcb.201210119 Link to full text
Abstract: Optical control of protein interactions has emerged as a powerful experimental paradigm for manipulating and studying various cellular processes. Tools are now available for controlling a number of cellular functions, but some fundamental processes, such as protein secretion, have been difficult to engineer using current optical tools. Here we use UVR8, a plant photoreceptor protein that forms photolabile homodimers, to engineer the first light-triggered protein secretion system. UVR8 fusion proteins were conditionally sequestered in the endoplasmic reticulum, and a brief pulse of light triggered robust forward trafficking through the secretory pathway to the plasma membrane. UVR8 was not responsive to excitation light used to image cyan, green, or red fluorescent protein variants, allowing multicolor visualization of cellular markers and secreted protein cargo as it traverses the cellular secretory pathway. We implemented this novel tool in neurons to demonstrate restricted, local trafficking of secretory cargo near dendritic branch points.
63.

Biomedically relevant circuit-design strategies in mammalian synthetic biology.

blue red UV Cryptochromes LOV domains Phytochromes UV receptors Review
Mol Syst Biol, 30 Apr 2013 DOI: 10.1038/msb.2013.48 Link to full text
Abstract: The development and progress in synthetic biology has been remarkable. Although still in its infancy, synthetic biology has achieved much during the past decade. Improvements in genetic circuit design have increased the potential for clinical applicability of synthetic biology research. What began as simple transcriptional gene switches has rapidly developed into a variety of complex regulatory circuits based on the transcriptional, translational and post-translational regulation. Instead of compounds with potential pharmacologic side effects, the inducer molecules now used are metabolites of the human body and even members of native cell signaling pathways. In this review, we address recent progress in mammalian synthetic biology circuit design and focus on how novel designs push synthetic biology toward clinical implementation. Groundbreaking research on the implementation of optogenetics and intercellular communications is addressed, as particularly optogenetics provides unprecedented opportunities for clinical application. Along with an increase in synthetic network complexity, multicellular systems are now being used to provide a platform for next-generation circuit design.
64.

Photoinduced damage to cellular DNA: direct and photosensitized reactions.

UV UV receptors Review Background
Photochem Photobiol, 30 Aug 2012 DOI: 10.1111/j.1751-1097.2012.01200.x Link to full text
Abstract: The survey focuses on recent aspects of photochemical reactions to cellular DNA that are implicated through the predominant formation of mostly bipyrimidine photoproducts in deleterious effects of human exposure to sunlight. Recent developments in analytical methods have allowed accurate and quantitative measurements of the main DNA photoproducts in cells and human skin. Highly mutagenic CC and CT bipyrimidine photoproducts, including cyclobutane pyrimidine dimers and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) are generated in low yields with respect to TT and TC photoproducts. Another striking finding deals with the formation of Dewar valence isomers, the third class of bipyrimidine photoproducts that is accounted for by UVA-mediated isomerization of initially UVB generated 6-4PPs. Cyclobutadithymine (T<>T) has been unambiguously shown to be involved in the genotoxicity of UVA radiation. Thus, T<>T is formed in UVA-irradiated cellular DNA according to a direct excitation mechanism with a higher efficiency than oxidatively generated DNA damage that arises mostly through the Type II photosensitization mechanism. C<>C and C<>T are repaired at rates intermediate between those of T<>T and 6-4TT. Evidence has been also provided for the occurrence of photosensitized reactions mediated by exogenous agents that act either in an independent way or through photodynamic effects.
65.

Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges.

UV UV receptors Background
Science, 9 Feb 2012 DOI: 10.1126/science.1218091 Link to full text
Abstract: The recently identified plant photoreceptor UVR8 (UV RESISTANCE LOCUS 8) triggers regulatory changes in gene expression in response to ultraviolet-B (UV-B) light through an unknown mechanism. Here, crystallographic and solution structures of the UVR8 homodimer, together with mutagenesis and far-UV circular dichroism spectroscopy, reveal its mechanisms for UV-B perception and signal transduction. β-propeller subunits form a remarkable, tryptophan-dominated, dimer interface stitched together by a complex salt-bridge network. Salt-bridging arginines flank the excitonically coupled cross-dimer tryptophan "pyramid" responsible for UV-B sensing. Photoreception reversibly disrupts salt bridges, triggering dimer dissociation and signal initiation. Mutation of a single tryptophan to phenylalanine retunes the photoreceptor to detect UV-C wavelengths. Our analyses establish how UVR8 functions as a photoreceptor without a prosthetic chromophore to promote plant development and survival in sunlight.
Submit a new publication to our database